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1. Introductizn e

Consider the statistical model M =( X,A,{P,:#€(1 }) and event CEA and suppose we

s
(3 )

wish to estimate P,(C) based on a sample X=(x,, ...,x,) from M. The typical approach to

'
alay

LT,
)
4
v

this problem is to select a probability measure QX on A, dependent on the observed data, and

-

-

4"!}'!

then quote QX(C) as the estimate.

4

4

For example the nonparametric estimator of Py C) is

o
QH(O)m - le(x) w8

of

where Io is the indicator function of C; i.e. the empirical probability content of C. For 2

sufficiently broad class {P,:d€(? } this estimator is known to be UMVU.

If m(X) is a complete minimal sufficient statistic for {P):9€f] } then :’“‘
QH(C)=E[ Q¥ C):m(X)] (2) '

is UMVU. Clearly Qff is a probability measure on A a3 1t is formed by mixing probability dis-
tributions.
. Perhaps the mos;. commonly used method of obtaining an estimate is to choose some
estimator 4(X) of 9; e.g. the MLE, and then quote
Q¥(C)m=Pyy(C) (3)
a5 the estimate.
In 2 Bayesian context, or perhaps just as a method of generating a plausible estimate,

a prior for 4 gives rise to a posterior Py for 6 which in tum induces a distributior for P,(C).

Then the minimum Bayes risk estimator with respect to squared error loss is given by

\_*:

Q'l}'(c)‘“f P/ C)dry(6) (4) ::..-j:.;jq

o] IOAON

| Sy

the expected value of P, with respect to the posterior. Again QF is a probability measure on 4 S
u

as it is a mixture of probability mncasures. ) _:.-,:.-;4
Other strategics could also Le devised for obtaining estimates but we will restrict our ; ’1

discussion 1o those presented above. In. all of these approachcs we note that the choice of Qy

does not depend on €. As such it seems niore approprinte to say we are cstimating P, rather
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than Py(C).

One way of inducing at least some dependence on C is via the jpint invariant group of
the model M and the event C; namely the class G of those 1-1, bimeasurable g: X — X satis-
fying gC== C and both of P,g and P,g~! are in {P;:0€Q } for all €Q. If X also satisfies
topological requirements then it makes sense to require that g also preserve this structure; ¢.g.
if X==R? then we requin; g to be a diffeomorphism (1-1, onto and infinitely differentiable
both ways). If x~P, then gx~P,g~' and P,(C)m==P,(g~'C)mP,g~}(C). Thus the estimate
of P,(C) should satisfy Q¥(C)=@G*X(C); i.e. our estimate should be the same whether we
observe X or gX. As we shall see, this criterion leads to some restriction in the class of possi-

ble estimators for the problem we consider in the succeeding sections.

2. Circular Error Probabilities for the Bivariate Normal

Suppose that x~Np(u,E) and C,={x: x'x < k?}. Thus x could give the coordinates
of the hitting point for some projectile aimed at bullseye 0 and we wish to estimate the proba
bility of coming within k of 0 as an assessment of the accuracy of the targeting procedure.

Even when (4,Z) is known the proi;lem of caleulating P(, r(C)) is significant. For
v.arious tabulations and results related t this problem see, for example, Grad and Solo-
mon(1955), Harter(1960), Lowe(1960), Groenewcud et al.(1987) and Govindarajulu(1983).
For further problems involving probability calculations related to targeting problems see, for
example, Solomon(1953) and Guenther and Terragno(1964).

The problem we are concerncd with here is w estimate P, )( Cy) based on a sample
X==(x,,...,x,) from the Ny(pu,I) distribution where u€R? and Z€R?2 positive definiie
are unknown. The relevant invariant group for this problem is O(2), the group of orthogonal

transformations on R? In particular we discuss algorithms for the evaluation of estimators of

" the form (2), (3) and (4) which satisfy the invariance requirement. Further we present some

Monte Carlo results which give some indication as w0 the behaviour of the estimates in
repcated sampling and as such present additional informalion for the investigator who might

be faced with chioosing amongst them.
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The estimators appropriate to the situations when (u,L) is restricted; e.g. requiring
that T=222J and ¢ >0 unknown, can typically be obtained by making obvious adjustments to
our algorithms for the most general case. The computer programs for the cvaluation of the
estimators and the simulation were written in Fortran 77 and are available from the authess.
All the calculations discussed in this paper were carried out on the PDP 11-70 in the Depart-
ment of Statistics, University of Toronto.

The dual of the problem addressed here is to specifly po==P(, 5)(C,) and then based
on the data X estimate k. When py==.5 the value of k is referred to as the circular probable

error. This problem is discussed in Blischke and Halpin(1968).

3. The Standard Estimator

By the standard estimator we mean

QA C)=Pig, (2159 ()

L]
where X=n"1Yx; 2nd Sy==(X-%1')(X-%1')"; i.c. we have replaced 4 and T by their UMVU
-

escir.nators. This estimate is clearly invariant under O(2). The tabulations mentioned earlier are
svailable for the caleulation of (5). This approach, however, requires interpolation and is not
sppropriate for extensive Monte Carlo work. We discuss two approaches to the computer
svaluation of this estimator.

First we write Sy==5,5,' where S5=(s;) is the unique lower triangular matrix with

positive diagonal elements satis{ying this equation. Then if 8~N,(0,]) we can write (5) as

Pran( [R+H{n=1)""2 Saall < k) =P 325+ € (n-1)k?)

el
where b=(n-1)'2QS;' X and QDQ is the spectral decomposition of S4'S,.
An algorithm for calculating (6) is obtained by using the fact that z;, 2,~N(0,1), sta-

tistically independent and thus we can write (6) as

()

(6)
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~bgrdg Y(n1)5 :
[ [@(u())-&(1(2))]o(s)dz (7)

~bge d5 Y (n=1)

where @ is the distribution function for the N(0,1), ¢ is the density,
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» s >

-, e
.

Al

]

Y
PPt

and u(s), I(z) equal

s
i
I "

bk di [(n-1) k2~ d3(2,405)%' (8)

: respectively. An efficient algorithm is then obtained by using a packaged routine for the

O e g
i

evaluation of ¥, ¢.g. IMSL, and performing the integration using a Gauss-Legendre rule.

i A disadvantage of the above approach arises when we are inwrestzd in the higher ._‘___‘
dimensional analogs of this problem as the computation becomes progressively more compli- E":
cated. A more efficient approach, and it is the one we have adopted, is based on an adaptation [E\
of an algorithm due o Sheil and O'Muircheartaigh(1977) which.is in t\.xrn based on results due ::
to Ruben(1962) concerning the evaluation of the distribution of (z+b)'D(z+b) where E
s~N,(0,]), bSR* and DER?™ is diagonal with nonnegative diagonal elements. The result :‘:

LHMTTSTE T Y R - L

gives a series representation for the distribution function of this quantity and thus also a series

[ ]
.
.
Y .
. L

representation for (6). We controlled the accuracy in our calculation by stopping the summa-. o
tion when the contribution of the remaining terms was less than 10°!'. For p== 2, n= 20 an I\\_:‘
R

evaluation of the estimate takes approximately .1 seconds of CPU time. 'L"\:
t-:

4. The UMVU Estimator ':‘-
We have that (X, Sy) is a complete minimal sufficient statistic and thus the UMVU
estimator is given by E;
QI(C)=E[QHCM) : &, Sx|=E(le,(x)) : %, Sx]. (9)

This expectation can be evaluated using a result due to Laurent{1957); namely the conditional
distribution of x; given (X, Sx) has density proportional to E;
[1- (1= /)" (%)= R)'SF }(x,- %) (- 912 10 %

where x, is constrained so that the term in the brackets is positive. If we transform X—QX \
where QEO(2) we see that (10) is unchanged and thus this estimator is invariant under O(2). t:

qv- r . L]
ST s,
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Laurent proposcd that a caqulat.ion' such as (0} ¢suld be carried out by a double
numetrical integration. In fact we can simplify the calculation of (9) substan:ially, First we
maoke the transformation x,—t where t==vI-1/n S4(x,-X). The density of t i3 wen propor-
tional to

(1-vy(=-817,
Then in a particular quadrant of R? we make the wansformation t—v where v!Z==d.t,
d;==egn(4). This transformation has Jacobian (1/2)3v{ Y2v; !/ and thus the density of v, con-
ditional on 4 quadrant, is proportional to
oi Poj (1= vy=wg) (=812,
From this we conclude that {v,,vq,1- v,~ v;) is distributed Dirichley(1/2,1/2,(n-3)/2).

The estimate can then be expressed os

S P{(I-l"'\/l—l;ﬂ Gudivllﬂ)z‘i'

1
44,z
(Fo+VI=1/n 85d\ v} 2 +VI-1/n spdyvi)2< k%)
where Say=(4;) and P refers to the distribution of (v;,v;). We now make the transformation
(v1,93)—(u,v) where w=1,/(1- v;) and v=1v,. This transformation has Jacobian 1-v and thus
the joint density of (u,v) is proportional to
.-lﬂ( 1_,)(--5)/2,,-!/2(1_,)(--4)/2_

Therefore u~Beta(1/2,(n-3)/2) is statistically independent of v~Beta(1/2,(n-2)/2). Then
denoting the Beta(p,q) distribution and density functions by B( - |p,q) and (- |p,q)

respectively (13) can be written as

T T [ (Buo) 1/2,(n=3)/2)- Bi(0) 11/2,(n=3) D)} (v [1/2,(n=2) /2)do

ddg=z1 LN
where putting rp, 7, equal to
[dalFyoa- Fooyi) 2k (of, +03)) 2k /VI-T]0 400
respectively, we have that

vg~=lm€n(maz(;,-,0),l)]2

and putling 4,5, 8, cqual o

(1)

(12)

(13)

(14)

(18)

(16)

(17)
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[=8(v)£(b2(v)-4ac(v))'F]/2eVi-v (18)

AT

reapectively where

em(1-1/n)(s} +oh) -
t ;‘\-',
b(v)—2v 1- l;ﬂ ‘l( Fl‘ll+§-ﬁ‘3i+v 1~ l;" cﬂond,v‘f‘) é“ :

.|
Sadie)

e(v) (T +VI-1/n aqdav')?+(F] - &7) (19)

il -

<t
At A
P "

then we have that

RS LLRPRT R IR Y LR R R

w(v)==[min(maz(4,0),1)]% (20)

PRRRE ol IREAS

Ty e

To evaluate (15) we use an IMSL subroutine for ~B( - |1/2,(n-13)/2) and then use

Gauss-Legendre integration. The efficiency of the integration is improved by using an IMSL

)

routine for the inverse of the Beta(1/2,(n-2)/2) distribution function to find the point vsup

- such that B(vsup|1/2,(n-2)/2)=.999999 and then using min( v, ,vsup) as the upper limit in ;:;:;f
i the integration. This ensures that the Gauss points are concentrated where the probability lies. L

We further improved the efficiency of the integration by making the transformation v—w <~

C - . .
i.'n. ., A i, .
PR PR AL
ST PR

-

where w==v'”? so that w has density proportional to (1- w?)(*~9/ This transformation

removes the singularity at 0 which 8( - |1/2,(n-2)/2) possesses.

The accuracy of the calculation is controlled by dividing the interval of integration

$ Fon_t s *e

into subintervals of equal length and using a Gauss rule of the same otder in each. The pro- .»‘
gram aliows the order of the rule w vary from 1 to 20 and for as many subdivisons as desired. *
Thus arbitrary accuracy can be achizved with the tradeofl being computing time. For n== 20, :
using 4 subdivisions and a Gauss(10) rule, stability was achieved in the fifth decimal place and :f‘
3 1

took about 1.5 seconds of CPU time.

v
l. N
At

v
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5. Bayes Estimate

N
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‘. There are of course many different Bayes cstimatcs as there. are many different

e

Ky choices for the prior distribution of @ and for the loss [unction. Here we will use mean-square

L N
::: error and choose the prior distribution for (4,E) to be Jeflrey’s prior; sec for cxample Box and -
o W,
[N w

Tiao(1973).

An alternative approach to this problem, which also leads o the Bayes estimate

]
.
[ 25
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associated  with  Jcffrey’s prior, is to use the strectural model for the

multivariale normal model based on the affine group; i.e. the group

G={|a,C] : s€R?, CER™3, det(C)¥ 0}, (ay,C\| (82, Col =8+ C %, C,C] and we represent
x~Ng{p,L) as xme[p,[']sm=p+l's where T satisfies T=I'T"" and s~Ny(0,). This approach is
discussed in Fraser(1979) where the positive affine group is used; i.e. we also require
det{C) >0. Use of the [ull affine group requires only minor sdjustment to the analysis
presented in Fraser(1979) and it provides a convenient framework for obtaining our results.

The structural modcl leads to the following relations

p=2-TF

F=CxC'!
where Ta=I'T!, TER?™ with det(T)9& 0, Sxy==CxCx' with Cy€R3 calculated as described in
Fraser(1979), T~Ny{o,n"'I) statistically independeni of C which has density as described in
Fraser(1979) with the adjustment that the density is mulﬁpiied by 23 and is now a function
on {C : CERP?, det(C) 5 0).

As is well-known, the Bayes estimate with respect to mean-square error. is given by
the mean-value, assuming it exists, of the marginal post.erior distribution <;f the quantity to be
estimated. Thus we wish to calculate

fP(..!:)( Cy)dPx(u,L)
Denoting the joint posterior distribution of (4,I') by P; and using Z=TIT"' we can write (22)
as

f P 1l+Ts]|< k)dPX(n.T)
This cxpectation can be evaluated by using the relations (21) and the joint distribution P° for
(%,C) w obtain
£ Py I+VIFITR CxtlI< k)dP'(3,0)

where t=v1+1/n C-)(s-1). From Fraser(1979) we have that t has density function given by

Avg AT (1+1E 422) 0

where A,=‘21r’/"/l‘(l/2); i.e. t has a canonical bivariate Student (n-1) distribution. Using the

(21)

::_‘.j:::;,
@ [
CON -

(24)

(25)
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Gram-Schmidt decomposition on the rows of Cy we obtain Cy=5,Q where S, is as before

and QEO(2). We note that the distribution of t is invariant under orthogonal transformations.

Then by the theorem of total probability (24) can be written as .L'*'-’\
RSN -
P((fl+v 1+1;’l l]|‘1)2+(;g+v 1+1;’| ‘|3‘1+V1+1;ﬂ ‘22‘2)25 k,) (20) ;::‘_:
P\~:'~
where P refers to the distribution of t .;;.*';.
We now make the transformation (¢;,t)—{w,v) where w=+/n-1 t,//1+17 and ‘vf
v=m\/n-2 t;. The density of (u,v) is proportional to .
| (1+ o ) '/’(1+-——'2 )-(s-172 (27)
i n-1" n-2 -
. and thus u~Student(n-1) statistically independent of v~Student(n-2). Therefore, denoting ‘_:7'-_'.
. the Student()) distribution and density functions by G(-]\), g(- ) respectively, we have that "f',.:'.
i {27) can be written as t.'.‘:.'r.';\
. " :
N I[G(ug(v) jn=1)= G(u;(v) In-1)] g(v|n-2)dv (29) :'-_'_'.‘;:'.
. " R
‘l o where vg,v, equal L
V=2 [Ti8g- Taenx kel +ody | /V1+1/n 41182 (29) :_:
: respectively, wov),%,(v) equal :::.-}_:.-
I VATT (1403 /(0= 2)]" - by{0) & (33 (v)-401¢1(9)) 7] /2, (30)

respeztively and
o;=(1+1/n)(ed +63)
by(v)=2VIFI/n ((Fiou+522VIFI/N [(Fyo0+T280)) +VIFI/n 3310509 /Vn-2 ]
ey v)=(Fo+VI+1/n saqv/Va-2 )2+T0 - k* (31)

The calculation is then carried out using an IMSL subroutine for the Student distribu-

tion function and Gauss-Legendre rules for the integrauon. The accuracy was controlled by

-,
S
'

subdividing the interval (v,,v;) into subintervals of equal length, carrying out the numerical
integration within cach subinterval using a Gauss rule of the same order and controlling the

number of points in the rule. If v, <0< vy then cach of the intervals (vy,0) and (0,v3) was

subdivided into the same number of subintervals of equal length. This is to ensure that the

s e

1:\ -...: .‘-{
- -~ \'.\ “
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mode 0 of the Student density serves as an endpoint for the integration as this improves the
efficiency of the calculation. A further improvement was made by requiring that ;| be no
greater than £ go000:(n- 2) and this point was obtained from aa IMSL subroutine [or the inverse
of a Student distribution function. For n=s 20, using 4 subdivisions and a Gauss(10) rule, sta-
bility was obtained in the ffth decimal place. This calculation took approximately .8 seconds of
CPU time. |

As discussed above, the estimator (28) is ootained using Jeffrey’s prior and the result
is also obtained from the structural model using the affine group. In effcct Jeffrey’s prior
results as the marginalization of the right Haar prior on this grou,. As is well-known other
groups can be used to parametrize the multivariate normal model and their right Haar priors
give rise to diffcrent priors for the full parameter (u,X). For example, the affine lower riangu-
lar group leads Lo the estimate

P(|R+VITI/n SatllS k)
where P refers to the distribution of t which has density proportional to
(A+e2) Y1 +t3 +e3)- (-1

by results in Fraser{1978). Thus we see we will obtain a different estimate of a form similar to
(28) in this case.

The invariance considerations lead, however, to the choice of the estimator (28). For
if we transform X to QX where QEO(2) then (X,Cy) transforrus to ( QX,QCx) and from (24)
we see that the estimator is invariant under O{2). This invariance property does not hold,
};owc\'er, for the estimator based on the affine lower triangular group. For example, if Sy= 1
then Sp=I1, Q5@ ==1 and (33) is not invariant with respect to O(2) which proves the non-

invariance of the estimate in this case.

8. The Monte Carlo Stcdy
To study analytically the repeated sampling behaviour of the estimates we have dis-

cussed presents a difficult problem. Accordingly a simulation study was carricd out to sce how

effective the cstimators are and (¢ assess their relative irerits.

-3 oMl S ACIS I A e 54 BT v i i i o e 1Wﬂmmwmwr\
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(32)

(33)
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The performance of the estimators was considerced for four seta of parameter values

(¢) p==0, T==J

(#) pwml, Tem]

(#) p==0, T=.511'+5]

(fv) peml, Tom 511'+.57.
For each parameter set we calculated k such that P(, y( Cy)==.5 using the algorithm of Sheil
and O’Muircheartaigh{1977). Our estimates were then always of the true value .5. For each
parameter set we considered the estimation problem for sample sizes n= 10 and n== 20,

For a given parameter (u,Z) and sample size n we do not nesd to generawe the full
.umple X-;(x,, vy %,) from Ng(u,Z) to calculate the estimates. qu we need only generate
(%,Sx) where X~Ny(p,n"'L) statistically independent of Sy~W, (I, n-1}. To do this we used
the following relations .

o ji+0~ V2L \n

Sx==L,SaSaTs!
where  8~Nj{0,]) statistically independent- of Sa=(s;) where s ~Chi-square(n-1),
0§~Chi-squue(n-2), 45;~N(0,1), 4,270 and 1), 835, 45, are statistically independent. The
N(0,1)  variables were generated using the Box-Muller method; namely
sm(-2log(¥,;)) Pcos(2m ug) where v, v, are statistically independent and distributed U(0,1).
The chi-aqu;.re variables were generated using a method due to Cheng and Feast(1979) and in
fact we used the program RGKM3 as it is listed in Bratley, Fox and Schrage(1983).

The uniform random variates needed for the generation of the normals and chi-
squares were obtained using the routine due o Schrage(1979). To decrcase possible effects
due to not-quite-randomness we first filled a table with uniform values . Then each time a
value was required we generated a random address ,the contents of which becomes the gen-
eraw:d value, and replaced it in the table by a newly generated valye.

For any given (X,Sy), generated as above, we computed all three estimators; i.e we

used common random numbers. Accordingly the estimators share equally in any cffects due to

(34)

% ebn o
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deficiencies in the gonerators. Fu.rlhcr, as we will sce, this technique substantially improved

the efliciency of the Monte Carlo study.

+ For 2 given sample size and parameter set we generated nrep values of (?,S‘x) where

nrep depended on the sample size n. Then for each estimator, denoted generically for con-

.‘ vgnience by x, we estimated

5 Av(z)=E(z)

MSE(z)=E(2-.5)? (35)

by

l arn
Av(z)—;’_—e;ﬁz;

(L3

Msz(z)--”—:e_;"z'f( 2~ 5)? (38)

(e}
respectively. The standard errors of these estimates are given by
SD(Av(z))=(E(2?)-(E(2))3'?/V/nrep
SD(MSE(z))={E(z~-.5)'- (E(z- 5)%)%'3/Vnrep (37)

respectively and they in turn are estimated by

& 80 (Au())={ Bl An(a))?arp(nrep- )]

.éD(Msz(z)-['ff(( ;- .8)2= MSE(z2))?/nrep(nrep- 1)/ (38)
fm}]

respectively. We then tested the null hypothesis that x is unbiased for .5 via a z-test using the

statistic

em(Av(z)-.5)/SD(Av(z)) (39)
i.. we comparc this value with the N(0,1) distribution by computing the observed level of

significance P(|Z | > |2 |) where Z2-~N(0,1). ;::,«".j :

The primary purposc of the study was to compare MSE(x) with MSE(y) for estima-
tors x and y. When x is the nonparametric estimator we have that MSE(x)== .25/nrep and the

test statstic takes the form

e e O T N P ST
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s==(MSE(y)- MSE(2))/SD(MSE(y)) (40)

When x and y are two of the estimators we discussed in.the preceding sections thie test statistic

takes che form
s==( MSE(y)- MSE(2))/SD(MSE(y)- MSE(z)) (41)

where
SD(MSE(y)~ MSE(z))==|[8D¥ MSE(y))+$D*(MSE(z))-2Cov( MSE(y),MSL(z))|' (42)
is the estimate of
SD(MSE(y)- MSE(z))==|( Var(y- .5)*+ Var(z~.5)3-2Cov((y- .5)%(z~ .5)%)) /nrep] '/ (43)
and where

Cov( MSE(y),MSE( z))-g((y,- 8)¥( 2~ .5)%- MSE(y)MSE(z)) /nrep(nrep-1). (44)

The zovariance term is required in (43) because we have used common random numbers.
From this we see whers the gain in efficiency was obtained as in all cases MSE(z) and
MSE(Y) were positively correlated and this reduced SD{MSE(y)- MSE(z)) subatantially.
The estimated correlation between these two quantities ranged from .460 to .996 and in most o
cases was greater than .700.

' The number of replications for each sample size and parameter sct was determined by
first performing a wial run of 100 for all cases and calculating the estimates we have just
described. The primary determinant of sampling variability turned out to be the sample size.
We then estimated an upper bound for SD(MSE(z)) for all estimators over all parameter sets
within a sample size. On the basis of this information we chose nrep so that when n= 10 the
half-length of a .95-confidrace interval for MSE(x) would be less than .001 and when n= 20
so that a .95-confidence interval would have hall-length less than .00025. With some extra
margin for safety this lead o choosing nrepws 15000 when nw= 10 and' nreps== 10039 when
nw= 20, The results we obtuined tend to confirmi our expectations. Tlicse choices gave con-

clusive results for the comparisons amongst the MSE(x) because of the use of common ran.

i dom numbers. Further these values of nrep gove that the half-length of a .895-confidence

interval for Av(x) is less than 003,
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For each estimator the accuracy of the calculation was controlled so that the error was
less than 5x10°¢ iﬁ each evaluation of the estimate; i.c. if # denotes the computed value of
the estimate and z* denotes the ac?unl value of the estimate then
E-2*|< $xa0°¢ (45)
Thus the absolute crrorin Av(z) is less than 5510™° and since
Kz~ 8)%-(4-5)%|< Hz°)2-%)2 2|2 -7 jmm j5°~ 2 ||z '+2 |+2|2°- 7 |< $|2°- £ | (48)
we have thal the absoluts error in MSE(z) is less than 2)(10".' All ealculations were done in

double precision.
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Table 1

Sample size= 10

Parameters l Estimator

Av(z) | $D(Av(z)) l aA] MSE(:)—l SD(MSE(z))

oM

(1 Laurent 0.501630 0.00004879 0.088 0.013508 0.00016078 0.0
Standard  0.507041 0.00088234 0.0 0.011740 0.00014092 0.0

Baves 0.422713 0.00077622 0.0 0.015011 0.00013103 0.0

(W) Laarent 0.499720 0.00102002 0.787 0.015600 0.00018432 0.0
Standard  0.406583 0.00101844 0.001 0.015589 0.00018075 Q.0

Bayes 0.443320 0.00087711 0.0 0.014752 0.00015769 0.0

(1) Laarent 0.501258 0.00002129 0.174 0.1271320 0.00015824 0.0
Standard  0.608730 0.000808404 0.0 0.011231 0.00013910 0.0

Bayes 0.422180 0.00076098 0.0 0.014879 0.00012915 0.0

(iv) Lsutent 0.499390 0.00100313 0.549 0.015093 0.00018800 0.0
Standard  0.401079 0.00100830 09 0.015329 0.00018526 0.0

Bayes 0.434217 0.00088902 0.0 0.016182 0.00017134 0.0
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Table 2
Sample sizes= 10
Parametars Comparison l x I 8D(MSE(y)- MSE(z))
= (1) Laurent vs Standard ~ 74.8 0.00002363 Wtﬁ 7
Laurentvs Bayes  -10.2 0.00014714 !i
i Standard vs Bayes -23.2 0.00014068 .;:
- o
25‘_ (1) Laurent ve Standerd 232 0.00001572
o S
': ‘Lasurent vs Bayes 735 0.00011612 F"
. ’ Standard vs Bayes 776 o.&mom i
.:: (i) Laurent vs Standard  68.5 0.00002257
i Laurent vs Bayes -14.7 0.000145610
e " SwadwdvsBayes  -268 0.00013760
< ,
: (iv) . Laurent vs Standerd 114 0.00002064 [_'
e e
E Laursnt vs Bayes -8.33 0.00013004 N
Standard vs Bayes 247 0.00011426 r
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Table 3
R Sample sizem 20
| Panmeuers | Estimator | Av(z) ISD(Av(z)) | ax | MSE(z) | $D(MSE(z)) | ax
N 0] Laurent 0500797 000079951 0682  0.006302 0.00009160 0.0
3 Standard 0504993 000077234 00 0.005989 0.00008667 0.0
! Bayes 0460413  0.00072084 00 0.006763 0.00008111 0.0 ,
; () Lasrent 0500332  C.00087000  0.529  0.00758¢ 0.00010944 0.0 bo
.‘ ) Staadard 0498784  0.00087101 0181  0.007537 0.00010904 0.0 [;.
g Bayes 0473130 00008048 0.0 0.007225 0.00009973 0.0 N
- b
A a
- (1) Laurent 0500807  0.00077780  0.245  0.006050 0.00009016 0.0 we
Py o
- Standard  0.503960 000075381 0.0 0.006897 0.00008533 00 =
- £
- Bayes 0400346 000070728 0.0 0.000575 0.00007921 0.0 -
_ ' o
» {iv) Laursnt 0500133  0.00085500 08¢  0.007300 0.00010730 0.0 ‘;
; Sisadard  0.40667¢ 000085777 0.0 0.007376 0.00010738 0.0 L
- o
vl Bayes 0465767 000081321 0.0 0007784 0.00010672 0.0 v
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i Table 4
- Sample size= 20
i Facsmeters l Comparison r 3 l SD(MSE(y)-A\:!SE(z))
\.

- (1) Laurent vs Standard  §2.6 0.00000765
- Laurent vs Bayes -5.73 0.00006470
i Standard va Bayes  -11.56 0.00006607 “n
'. (ki) Laurent vs Standard  -0.74 . 0.00000448
= Laarent vs Bages 7.44 0.00004820
. : Sandard veBayes 8.0 0.000044%0
"~
o (1) Laurent vs Standard  53.48 0.00000659
"o
. Laarent vs Bayes Y 0.00006380
w Standard ve Bayes -13.56 0.000008470
::?‘ (iv) Laurent va Standard  .8.32 0.00000800
= - Laurent va Bayes -7.93 0.00005991

Standard vs Bayes -7.70 0.00005308




In every case it turns out that we have no evidence against the hypothesis that the
Laurent estimator is unbiased for .5 and this is as theory predicts. We see that in every case

except n= 20,(ii) we reject the hypothesis that the Standard estimator is unbiased for .5. We

E note, however, that the bias in this estimator is quite small in every cose with the largest est-

: mate of the bias being about .009 and the bias decreases aa n increases. In every case we reject

! the hypothesis that the Bayes estimate is unbiased with the smallest estimate of its bias being

\ sbout .027. The bias decreases as n increases and can be severe for small sample sizes.

' In every case we reject the hypothesis that the mean-square error of the estimator f

4 included in the study was equal w that of th¢ nonparametric estimator. The Laurent, Stan- ?

:4 dard, and Bayes estimators would all appear to be substantial improvements over the non- E\:.
parametric estimator. The smallest relative efliciency , a3 measured by the ratio of the mean- LJ‘

1

- .
.

square errors, of an cstimator to the nonparametric estimator was 154%.
We now compare the mean-square errors of the estimators included in the study. We S

note thatin cvery case except for n= 20, (ii) Laurent versus Standard, we categorically reject

- ‘.‘ ','

I ) the hypothesis that the mean-square errors are equal. For (i), in both sample sizes, we have k
: that the Standard estimator is superior to Laurent’s which is in turn superior to the Bayes esti- ;g‘_\
mator. For (ii), the Dayes estimator is superior to the other two while the Standard is superior :E::
! to Laurent's when ne= 10 and they are equivalent when na= 20. For (iii), we have the same ¥
: ranking as in (i). For (iv), Laurent's estimator was best {ollowed by the Standard which in

. Goen .
Velila U s

vttt

turn was better than the Bayes estimator and this applied for both sample sizes.

We see from the sbove discussion that no estimator can be categorically accepted or

LJ ' 1 L]
. 'H;".".".‘. '

.
S

rejected as the best or worst in the circumstances we considered. On the other hand, when tak-

L]
. ] .

ing account of both bias and mean-square error, it would seem that the Standard estimator

L
'
« s

R I ESSRES waX

:E- wouid be the most practical choice. In fact the lowest relative efficiency of the Standard esti-
i{ mator o the best estimator, when it was not best, was about 949 The lowest relative
. efliciency of Laurent's estimator to the best was about 87% and the corresponding value for |

-

the Boye3 cstimator was about 759 Perheps most surprising in our results was the .good per-
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formance of the Standard cstimator relative to Laurcmt's cstimatoe given that the latter
: ' possesscs an optimality property. A further point in favour of the Standard estimator is given

by the fact that a much more cmcienc algorithm is available for its evaluation than for the

other two.

DI A —

7. Coaclusiona

This poper has been concerned with the problem of estimating circular error probabili-

«e’a P ¢ ummm———c .

ties when we require that the estimator be invariant under the invariant group of the circle.
j Three competing estimators were proposed and we developed efficient methods f{or their
g evaluation.” A Monte Carlo study was carried out to provide more information concerning the
relative merits of the estimators. On the basis of this study and the relative efficiencies of their
algorithms & recommendation can be made that the Standard estimator is perhaps the most
practically useful for this problem. In all cases the estimators were substantially better than the

nonparametric estimator when we are assuming bivariate normality.
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